Regulation of the differentiation of WEHI-3B D+ leukemia cells by granulocyte colony-stimulating factor receptor

نویسندگان

  • J Li
  • D C Koay
  • H Xiao
  • A C Sartorelli
چکیده

To investigate the role of the G-CSF receptor (G-CSFR) in mediating the action of G-CSF, WEHI-3B D+ murine myelomonocytic leukemia cells were transfected with a plasmid containing the murine G-CSFR gene. Overexpression of G-CSFR in transfected clones was demonstrated by northern blotting, binding of [125I]rhG-CSF and cross-linking experiments. A high level of expression of the G-CSFR did not promote or suppress cellular proliferation or initiate differentiation; however, exposure of transfected cells to G-CSF in suspension culture caused a large percentage of the population to enter a differentiation pathway, as determined by two markers of the mature state, the ability of cells to reduce nitroblue tetrazolium (NBT) and to express the differentiation antigen Mac-1 (CD11b) on the cell surface. Thus, upon treatment with 10 ng/ml of G-CSF, 60% or more of transfected cells exhibited NBT positivity; whereas, in contrast, nontransfected cells exhibited only 6% NBT positivity in response to G-CSF. An eightfold increase in Mac-1 expression over that of the parental line was also observed in transfected cells exposed to G-CSF. The growth rate of the transfected clones was decreased by exposure to G-CSF, presumably due to terminal differentiation. The findings suggest that the predominant function of G-CSF and its receptor in WEHI-3B D+ cells is to mediate differentiation and that the level of the G-CSFR portion of the signal transduction mechanism in this malignant cell line is important for a response to the maturation inducing function of the cytokine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution and purification of three distinct factors produced by Krebs ascites cells which have differentiation-inducing activity on murine myeloid leukemic cell lines.

The use of different myeloid leukemic cell lines (WEHI-3B D+ and M1) and different sources of factors has led to discrepancies concerning the identity of factors capable of inducing differentiation in leukemic cells. We have biochemically fractionated medium conditioned by one such source (Krebs II ascites cells) and assayed fractions for their bone marrow colony-stimulating activity as well as...

متن کامل

Binding of the differentiation-inducer, granulocyte-colony-stimulating factor, to responsive but not unresponsive leukemic cell lines.

Granulocyte-colony-stimulating factor (G-CSF) is a tissue-derived 25,000 Mr glycoprotein that stimulates neutrophilic granulocyte colony formation from murine bone marrow progenitor cells in vitro. It is also a potent inducer of terminal differentiation and suppressor of stem cell renewal in the murine myelomonocytic leukemic cell line WEHI-3B. Purified G-CSF was radioiodinated to high specific...

متن کامل

Induction of differentiation of WEHI-3B D+ leukemic cells transfected with differentiation-stimulating factor/leukemia inhibitory factor receptor cDNA.

Differentiation-stimulating factor (D-factor)/leukemia inhibitory factor can induce the differentiation of mouse myeloid leukemia M1 cells and also stimulate proliferation of the interleukin-3 (IL-3)-dependent cell line, DA-1a. To determine whether D-factor can induce the differentiation of leukemia cells other than M1 cells, WEHI-3B D+ mouse myelomonocytic leukemia cells were transfected with ...

متن کامل

Maintenance of retinoic acid receptor alpha pools by granulocyte colony-stimulating factor and lithium chloride in all-trans retinoic acid-treated WEHI-3B leukemia cells: relevance to the synergistic induction of terminal differentiation.

Previous studies have demonstrated that combinations of all-trans retinoic acid (ATRA) with either granulocyte-colony stimulating factor (G-CSF) or lithium chloride (LiCl) produced synergistic terminal differentiation of WEHI-3B myelomonocytic leukemia (D(+)) cells. It was found that steady-state retinoic acid receptor alpha (RARalpha) protein levels were markedly reduced in these cells after e...

متن کامل

Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells.

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 120  شماره 

صفحات  -

تاریخ انتشار 1993